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Abstract

Computational models of multimodal associations can help us to better understand the
ways different domains of human knowledge and experience interact with and supplement
each other. Natural language and color are two domains of particular interest, as they are
both integral to our experience of the world and are powerful communication devices in
their own rights. However, current computational models of human word-color associations
attempt to bring the color domain closer to the distributional semantic domain by treating
color as a lexical entity like any other target word. My work aims to preserve the rich
information contained in human beings’ experience of color by maintaining color as a
perceptual experience tied to some underlying understanding of word meaning. I first
establish a dataset of human color annotations for words that represent varying degrees
of abstractness and emotional content. Then, I develop three computational models that
are grounded in color data: a distributional semantic model, an image analysis model, and
finally, a Bayesian representativeness model. I find that the Bayesian representativeness
model is best able to discern meaningful structure in input color data, which allows it to
most closely emulate humans’ psychological color associations for words.
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1 Introduction & Related Work
Humans’ ability to acquire knowledge about the world at massive scales that far exceed their
lived experiences has intrigued philosophers and scientists as early as Plato (Landauer & Du-
mais, 1997). A similar question also arises with regards to humans’ natural language abilities:
despite only having direct experience with a small subset of an infinite number of possible ut-
terances, humans are constantly able to make sense of spoken and written language without
deliberate effort. For decades, this phenomenon has inspired computer scientists to develop
models of natural language that capture underlying semantic structures and simulate salient
aspects of humans’ acquisition of word meaning. While models of natural language, particularly
distributional semantic models (Landauer & Dumais, 1997; Griffiths, Steyvers, & Tenenbaum,
2007; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning,
2014), have become more robust in recent years, these models ultimately only derive their se-
mantic information from text, which neglects the breadth of perceptual sources that inform
humans’ language abilities. This desire to ground natural language models in richer, more
human-like sources of semantic knowledge have prompted interest in multimodal approaches to
natural language processing (Bruni et al., 2014). However, the project of modeling multimodal
associations introduces significant complexity: not only must such models capture the nature
of both sensory domains individually, but they must also provide a way of interfacing between
their different representations in a psychologically accurate way.

Of particular interest is the domain of color, as it has long been used a means of communi-
cation in its own right (Riley, 1995). Color also brings into question the way people process the
visual input stream of the world and the emotions and personal experiences they associate with
these inputs. As a visual artist, word-color associations intrigue me because of their potential to
reveal an intuitive “visual language” of color that is grounded in the most salient aspects of our
innate natural language abilities. As a computer scientist, formal representations of something
as uniquely experiential as color intrigue me as a way to explore the involvement of human
emotion and memory in artificial intelligences.

There are reasons to believe that there exist meaningful connections between words and
color, in particular, connections mediated by emotion. The Ecological Valence Theory (EVT)
of color preference posits that “a person’s preference for a given color is determined by their
combined valences (liking/disliking) for all objects and entities that person associates with that
color” (Schloss & Palmer, 2017). A different survey asked 40 undergraduate students asking
about their favorite colors, the major color they were wearing, their emotional responses to
colors, and the reasons for their choices (Hemphill, 1996). Researchers found that only 15% of
participants expressed no emotional response to color and the remaining 85% attributed bright
colors (white, pink, red, yellow, blue, purple, green) to positive emotions (happy, excited, re-
laxed), and dark colors (brown, black, gray) to negative emotions (anxious, boring, sad). These
findings suggest that color exists in a complex network of memory, emotion, and perceptual
experience. However, tapping into this network and directly mapping connections between
color and emotion can be difficult, so we must rely on language to articulate these associations.
While we cannot easily impart our visual experience of the world directly onto someone else, we
can use language to help us inch towards sharing our reality with others. It seems reasonable
then that the visual features of our world, of which color is especially important and pervasive,
would foster links between color and words.

Because both color and language are so ubiquitous in our daily lives, the potential benefits
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of developing a comprehensive, psychologically-grounded resource that captures human word-
color associations are far-reaching and span many domains. Such a resource is most promising
for students with dyslexia or other learning delays. Children remain very visually receptive
even when reading and writing is difficult for them. Coloring words based on psychologically-
grounded associations of colors and words could help to facilitate their learning and language
abilities by triggering both the visual memory and the verbal memory (Ozbal et al., 2011).
Marketing and advertising have also used the emotional power of color to capture attention
and forge long-lasting connections with brands and products (Labrecque & Milne, 2012). A
comprehensive, psychologically-grounded concept-color resource would advance the color theory
used by these fields. In the more distant future, such a word-color resource could be used as
a kind of translational dictionary between art and language. One could visually represent the
gist of a text by creating a “pixel-by-pixel” painting from the words in a passage or conversely,
analyze the colors of works of art and use a mapping of words and colors to create a textual
companion that “represents” the artwork.

In this work, I begin by collecting and analyzing human color annotations for a set of words
to establish a source of color data. I also use this data to determine the existence of color
associations for abstract words, or words whose semantics lie in mental concepts, and words
devoid of any clear emotional content. I then develop and evaluate three different computational
models for representing human word-color associations and predicting a psychologically and
perceptually salient color for a given word. The first is a distributional semantic model that
aims to produce a mapping between color space and GloVe semantic space (Pennington et
al., 2014). A second image analysis model implements a more automatic way of obtaining
word-color annotation data with the goal of evaluating other sources that may inform humans’
word-color associations. A final Bayesian representativeness model determines which word a
particular color point in LAB space should belong to based on its representativeness score
(Tenenbaum & Griffiths, 2001)

2 Human Word-Color Annotation Data

2.1 Background

Figure 1: Example of survey question presented to participants in Mohammad’s (2011)
distributional semantic model for measure word-color associations.

Previous studies of word-color associations have attempted to bring the color domain closer
to the better formalized semantic domain by treating color as a lexical entity just like any
other target word. Ozbal et al.’s (2011) language model method, for example, captured the
likelihood of each of the 11 colors modifying the target word based on frequency counts found in
the Google Web corpus of English bigrams. Their LSA method used the classic Latent Semantic
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Analysis (LSA) (Landauer & Dumais, 1997) framework by treating the colors as words in the
word-document input matrix. Word-color associations between the colors and target words
were then determined based on spatial proximity within the resulting LSA space. Mohammad
(2011) followed a similar data collection procedure by asking participants questions like those
in Figure 1. These approaches fail to capture the complexity of an experience of color that is
rooted in the way people process the visual input stream of the world and the emotions and
personal experiences they associate with these inputs.

My work aims to preserve the rich information contained in human beings’ experience of
color by maintaining color as a psychological and perceptual experience tied to some underlying
understanding of word meaning. I am also interested in understanding the nature of color
associations for abstract words, or words whose semantics lie in intangible, mental concepts
that are also devoid of any clear emotional content. For concrete words—words that do have a
real-world reference—one would expect the color association for the word to reflect something
about the visual experience involved: “apple” might be associated with red or green because
most people have experience with apples of these colors. However, with abstract words it is less
clear why there should be any consistent color associations, yet many would agree that “sad” is
blueish/grey and “angry” is red. One hypothesis is that there are strong emotional associations
to these abstract words that are mediated by some real-world reference. For example, rain
clouds are typically used to depict sadness and our faces become red and flushed when angry.
However, do people still agree upon color associations for words without clear emotional content
or real-world reference, like “verb” or “noun” or “big”? To answer these questions and create a
foundation for future word-color association models, I first create a dataset of human word-color
annotations.

2.1.1 CIELab Color Space

While color data is most conveniently obtained using an RGB, hue, saturation, value (RGB-
HSV) color space, this color space is known to be a poor proxy for color complexity as perceived
by most organisms (Hill, Roger, & Vorhagen, 1997). Additionally, RGB-HSV space is device
dependent, meaning that the colors produced in this space depend both on the equipment
used and the system settings used therein (Bora, Gupta, & Khan, 2015). To more accurately,
consistently, and reproducibly represent the way the human eye perceives color, I interact with
the color domain through the three-dimensional CIE L*a*b* color Space (Figure 2).

Figure 2: RGB HSV color space (left) vs. the perceptually uniform CIE L*a*b* Color Space
(right).
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Developed in 1976 by the International Commission on Illumination (CIE), the LAB space
intends to allow for “comparisons of differences between object colors of the same size and
shape, viewed in identical white to middle-grey surroundings.” As a result, Euclidean distances
in this space can be used to approximately represent perceived magnitude of color differences
(Schanda, 2007). In this space, a* and b* are chromaticity layers, representing red-green and
blue-yellow axes, respectively (Bora et al., 2015). L* represents the luminance, or more crudely,
the lightness of the stimulus (Schanda, 2007). The rigorous controls of the LAB color space
allow for more salient analysis of color data that is crowd-sourced from people using a variety
of personal equipment under a variety of settings.

2.2 Methods

Concrete Abstract
dog big
rain adjective
lime religion

universe noun
cloud angry
door justice
berry sad
tree verb
sky existence

running
soaring
fun
pain

equality

Table 1: Words for which color annotations were collected, selected based on their degree of
abstractness.

The 24 words shown in Table 1 were selected to represent a variety of word-types. About
half of these words were chosen for their degree of "concreteness". These are words that have
a real-world object reference or for which color is a salient feature of the concept the word
refers or relates to. The other half of these words are so-called "abstract" words that are
best described only by using other words. Some of these abstract words were chosen based
on the concreteness ratings determined by Brysbaert et al. (2013), others were chosen for
being emotion-laden (Sutton & Altarriba, 2015), and still others were chosen because their
abstractness lay in human constructs or measurements (e.g. "noun" or "big").

To obtain perceptually salient color annotations for these words, 120 participants were given
an online survey in which they were shown the 24 words in a random order, one at a time, and
instructed to select the color they most closely associated with each word from an RGB-HSV
color picker. Participants were also asked to select colors for 12 common color-words (e.g. “red”,
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“orange”, “cyan”, etc.) so as to provide a link between the color and semantic spaces for later
analysis. Finally, participants were asked to enter their age and select their gender from “male”,
“female”, and “other (please specify)”. To control for the differences across devices as much as
possible, participants were also asked to disable any software that altered screen colors (e.g.,
at different periods of the day, such as to obtain "warmer" or "cooler" colors), to set their
screens to a comfortable indoor brightness, and to complete the survey on a laptop or desktop
computer.

After converting the hex code color annotations obtained from the survey responses to LAB
coordinates, I plotted these responses and the average LAB value of these responses for each
word using a Matlab package (Eckhard, 2014).

2.3 Results

Figures 3 and 4 display the 120 color annotations obtained for each word, plotted in LAB space.

2.4 Analysis

2.4.1 Qualitative Analysis

As hypothesized, the LAB spaces of nearly all the concrete and emotion-laden words show
strong agreement among their color annotations. “berry”, “cloud”, “door”, “dog”, “tree”, and
“lime” all show clustering around the colors of their real-world references. “angry” and “sad”
show clustering around reds and blues, respectively, and particularly around darker shades of
these colors. Though the emotion and physical senses of “pain” were not disambiguated in the
survey, its LAB space clusters around darker, blood-like reds. While “mortal” is considerably
more abstract and ambiguous, it too clusters around similar shades of reds and blacks, which
could speak to the word’s connection to emotion-laden concepts like fear, death, or pain. On
the other hand, the LAB space for “fun” shows exclusively bright colors and most apparently
clusters around magenta/pink and yellow/sea green. These connections between brightness and
positive valence, and darkness and negative valence corroborate with findings in color-emotion
association research (Meier, Robinson, & Clore, 2004).

The LAB spaces of the present progressive verbs “running” and “soaring” show clustering
around the colors one would find in the environments that those actions might most typically
take place in. “soaring” clearly clusters around turquoise and sky blue, almost to the point
of directly mimicking the “sky” and “cloud” LAB spaces. To a lesser extent, “running” shows
clustering around the greens and yellows found in a park or field. If human color associations
do exist within a complex network of environment and personal experience (Schloss & Palmer,
2017), then the process of compiling and generalizing all these features of “running” or “soaring”
to arrive at a color-association for an abstract state is not trivial. The possible connections
between color, environment, and words raise the question of whether athletes and runners who
train on red or blue indoor tracks would have different color associations for the word “running”
than the casual park jogger.

Other words have a still greater degree of abstractness than these emotion or action words be-
cause their semantic value really only exists in relation to other concepts or purely human/social
constructs. “equality” and “justice” are two such examples whose LAB spaces interestingly show
some consistency among their responses. “equality” appears to cluster around brighter colors,
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Figure 3: LAB plots of human word-color annotation data.
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Figure 4: LAB plots of human word-color annotation data.
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particularly pinks and purples while “justice” clusters around reds and black. The LAB space
of “religion” shows a greater variety of responses, but still some clustering around warmer colors
(browns, reds, oranges, and yellows).

Of all the kinds of abstract words, I was most curious about the responses to the part of
speech words tested. “noun”, “adjective”, and “verb” are certainly abstract, human-fabricated
ideas like “justice” or “equality,” but are unique in that they seem very separate from any
emotion or connection to humanity. Each of these parts of speech is made even more abstract
by the fact that they encompass hundreds of words across hundreds of different categories
and contexts. Despite the unparalleled abstractness of these words, many of the participants I
talked to expressed very strong feelings about their color selections for these words. Though the
variance in the LAB spaces of these words is quite high, there is some clustering visible around
green for “verb” and around pinks and reds for “adjective”. It is unclear what might account
for these associations. Witthoft & Winawer (2013) found that 11 color-grapheme synesthetes
had startlingly similar color-grapheme pairings that were traceable to childhood toys containing
colored letters. Given that the population I surveyed was largely comprised of western, college-
educated young adults, one hypothesis could be that these associations are due to consistencies
in the way western textbooks and grammar lessons use color.

3 Distributional Semantic Model

3.1 Background

Distributional semantics aims to create formal representations of semantic knowledge while as-
suming the Distributional Hypothesis, which states that words that occur in the same contexts
tend to share similar meanings (Harris, 1954). Though popular distributional semantic models
take different approaches to the Distributional Hypothesis, they all essentially use co-occurrence
statistics of a natural language text to formulate statistical relationships about the semantic
environment. Predictive models like word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013) use a simple neural network representation to directly predict a word from its neighbors,
while count-based models like Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997)
and Topic Model (Griffiths, Steyvers, & Tenenbaum, 2007) use co-occurrence counts from a
large text corpus to eventually predict words based on spatial proximity. Many of these models
produce a spatial representation of semantic similarity such that distances between points in
semantic space represent the degree of similarity between word meanings. Another distinction
can be made between matrix factorization methods and local context window methods. Matrix
factorization methods like LSA use all the co-occurrence information for a large corpus, allowing
them to benefit from a large sample size and the repetition therein. However, these input ma-
trices are typically very sparse and result in a spatial representation that isn’t complex enough
to perform well on word analogy tasks (Pennington et al., 2014). On the other hand, making
predictions within local context windows of neighboring words, as word2vec does, doesn’t take
advantage of this statistical information in a corpus

3.1.1 Global Vectors for Word Representation (GloVe)

Global Vectors for Word Representation (GloVe) (Pennington et al., 2014) draws from the
unique advantages of matrix factorization methods and local context window methods. The
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model is trained on the non-zero entries of a global word-word co-occurrence matrix X, where
Xij is the number of times word j occurs in the context of word i and Pij = P (j|i) = Xij/Xi

gives the probability that j occurs in the context of i. The ratio of co-occurrence probabilities of
i and j with respect to different probe words k, Pik/Pjk, reflects the degree of relation between
k and i and k and j. Probability ratios close to 1 usefully indicate probe words that are either
equally relevant to i and j or irrelevant to both; access to the ratio values helps to further
quantify the degree of relevancy. Using this aspect of meaning found in the co-occurrence
statistics of a corpus as a starting point, GloVe addresses a variety of other computational and
semantic concerns to develop into the following weighted least squares regression model

J =
V∑

i,j=1

f(Xij)
(
wTi w̃j + bi + b̃j − logXij

)2
where J is the function to be minimized, V is the size of the vocabulary, wi is the word vector
for word i, w̃j is the context word vector for word j (essentially the transpose of wj), and bi
and b̃j are the "bias" terms for the word vector wi and context word vector w̃j, respectively.
This bias term is introduced to account for the fact that, for word-word co-occurrence matrices,
the distinction between a word and a context word is arbitrary. The weighting function f(Xij)
is non-decreasing and relatively small for large values of Xij, so that neither rare nor frequent
co-occurrences are overweighted.

GloVe performs significantly better than both flavors of word2vec and SVD-based methods
on both semantic and syntactic word analogy tasks. This indicates the presence of the same
kind of meaningful linear substructure responsible for word2vec’s success, while utilizing the
valuable co-occurrence statistics of the corpus to improve computational efficiency. In this
project, I use the GloVe model pretrained on the “glove-wiki-gigaword-100” data, which is a
combination of the Wikipedia 2014 dump and the Gigaword 5 corpus, trained on 6 billion
tokens, with 400,000 tokens considered unique.

3.2 Methods

To analyze the relationship between this color space and the semantic space that the 24 tested
words exist in, I first obtained the GloVe cosine similarities s between each of the 25 words
and each of the 12 color-words (Table 2). According to the GloVe model, the cosine similarities
(or Euclidean distance) between two word vectors provide a way of measuring the linguistic
or semantic similarity of the words (Pennington et al., 2013). Using each word’s semantic
relatedness to the color-words, I then calculated the semantically-predicted location w′ for each
word in two ways:

w′ =

∑
color-words s(word, color-word)v(color-word)∑

color-words s(word, color-word)
(1)

w′ =

∑
color-words e

(γ∗s(word,color-word))v(color-word)∑
color-words e

(γ∗s(word,color-word)) (2)

where v is the mean color value of the color-word, obtained by averaging the color values for
each color-word. In equation (2), the hyperparameter γ is tuned so as to minimize the sum of
the distances d over all 25 tested words, allowing me to determine the significance of s to the
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calculations of w′. I tested the following values of γ: 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1,
0.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0. The final color-semantic
distance d between the actual mean location (color value) w of a word as given by the human
annotations and its semantically-predicted location w′, is

d = w − w′

Word Color-word Cosine similarity s
dog red 0.43856516

orange 0.31241626
yellow 0.39498812
green 0.42506728
blue 0.4526073
purple 0.32258704
pink 0.4341574
brown 0.40182555
black 0.44863808
white 0.41592243
cyan -0.040190637

magenta -0.013375642

Table 2: Example of GloVe cosine similarities s between the tested word "dog" and each of
the 12 color-words.

3.2.1 Evaluation

In addition to conducting visual analyses of the LAB plots produced by the model, I evaluated
my results by performing the following statistical analysis to establish the chance color-semantic
distance d (i.e. what d would have been if there was no relationship between an average color
location and a semantically-predicted location). I obtained a distribution over the distance
between the average color location and semantically-predicted location by randomly pairing the
average human color annotation w of a tested word with the semantically predicted location
w′ of any other tested word. Using this, I determined the value of d such that 95% of the
permutation distances were above this value. Any of the words whose actual distances were
below this value could then be interpreted to be statistically significant—that is, less than 5%
probability by chance. I used this same evaluation method with different, model-appropriate
definitions of w′ for the image analysis and Bayesian representativeness models detailed later
in this paper.

3.3 Results

Figure 5 shows a sample visualization of the distance between average human color annotation
and color location predicted by the distributional semantic model. Figures 6, 7, and 8 present
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the results of the statistical analysis of computing the semantically-predicted location w′ using
equation (1) (i.e. without exponentiating the word/color-word similarity value or multiplying
by hyperparameter γ). Figures 10, 11, and 12 present the results of the statistical analysis of
computing the semantically-predicted location w′ using equation (2) (i.e. by exponentiating
the product of the word/color-word similarity value and the hyperparameter γ that minimized
d).

Figure 5: Example of a LAB plot from Section 2 with additional points for the average of the
human color annotations (labeled "average") and the color location as predicted by the

distributional semantic model (labeled "semantic") for the word "universe". The distance d
between these two points forms the basis of further statistical analysis.

3.4 Analysis

3.4.1 Statistical Analysis

Plotting the distances d between average color value of the human annotations and semantically
predicted location for each word shows that "berry" and "big" perform the best of all the words,
suggesting a particularly strong connection between the color domain and semantic domain for
these words. This is puzzling because while "berry" is a concrete word that one would expect
to have consistent color associations and references for, "big" is an extremely abstract word.
The LAB space for "berry" does show agreement among its color annotations, with clustering
around reds, purples, and pinks. However the LAB space for "big" has high variance, meaning
that its average color location would tend towards the origin, which is close to its inconclusive
semantically predicted location, and thus, may explain the statistical significance for this word.

Considering this color-semantic distance for "lime"—a concrete word with a very familiar
real-world object reference—in conjunction with its LAB space seems most troubling for the
hypothesis that a distributional semantic model is capable of correctly modeling word-color
associations. Few words’ LAB spaces cluster as strongly around a single color as that of "lime",
yet its semantically-predicted location is so far away from this cluster that it results in the
largest distance between the color and semantic domains. With the exception of "big" and
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Figure 6: Distances between the average color location w and semantically-predicted location
w′ for each word.

Figure 7: Scatter plot of distribution of distances obtained from randomly permuting w and
w′ across all the words tested.
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Figure 8: Histogram of distribution of distances obtained from randomly permuting w and w′
across all the words tested.

Figure 9: Sum of distances d over all 24 words, for each value of γ tested. γ = 0.10 was
chosen as it minimized the sum of the distances d over all 24 tested words.
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Figure 10: Distances between the average color location w and semantically-predicted
location w′ for each word for optimal value of γ.

Figure 11: Scatter plot of distribution of distances obtained from randomly permuting w and
w′ across all the words tested for optimal value of γ.
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Figure 12: Histogram of distribution of distances obtained from randomly permuting w and
w′ across all the words tested for optimal value of γ.

"berry", the tested words all have statistically non-significant distances between their average
color location and semantic location. This is puzzling because among these are emotion-laden
words like "sad", "pain", and "angry", and concrete words like "dog", "tree", and "lime", all
of which have LAB plots that clearly cluster around a single color. Even when there appears
to be word-color agreement in the color domain, this apparently does not translate to the same
word-color agreement in the semantic domain.

These findings are maintained in the results of choosing γ as to minimize the color-semantic
distance: "big" and "berry" still outperform the rest of the words, while many concrete and
emotion words have statistically non-significant color-semantic distances. Larger values of γ
suggest that the information found within the cosine similarity between words and color-words
is important to the semantically-predicted location of a word. However, values of γ closer to 0
suggest that there is not much information in the semantic domain, as essentially eliminating
the similarity metric would not change the semantically-predicted location w′. I found γ = 0.10
to be optimal, which leads me to believe that the information derived from the distributional
semantic model is not useful to the predictive abilities of this model.

3.5 Discussion

These results prompt the need for some improvements to this model in order to capitalize
on the theoretical potential for grounding automatic word-color associations in distributional
semantics. As a first step, improving the design of the data collection survey might help to
either reduce, or make more meaningful, the variance in the color data obtained. Many of
the words presented were highly abstract and quite difficult to arrive at color associations for.
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Some participants mentioned that they ended up choosing #ffffff (white) or #000000 (black)
for those words that did not elicit any particular color association. It is likely that many others
impulsively selected a color for certain words without having any serious associations, only
because the survey did not allow for non-responses. In the future, allowing subjects to indicate
that a word did not elicit any particular color association or to indicate on a scale from 1 to
5 how strongly they felt about the color they selected for each word might help determine the
most salient color associations.

Other concerns and opportunities lie in my method of interfacing with the semantic domain.
In using the GloVe cosine similarity metric, the calculation of the semantically-predicted loca-
tion w′ was ultimately derived from how frequently a tested word co-occurred with each of the
color-words, within the corpus that the semantic model was trained on—namely, seven distinct
international sources of English Newswire and Wikipedia (Pennington et al. 2013). Thus, the
color-semantic distances I have obtained could say less about a semantic basis for psychological
word-color associations, and more about the sparsity of words and color-word co-occurrences
within the language registers represented in the GloVe training data. It is possible that a
training corpus comprised of fictional stories, poetry, or creative writing might be less sparse
with respect to words and color-word co-occurrences because of the illustrative, metaphorical
language featured in these kinds of texts.

Finally, my two methods of computing the semantically-predicted location w′ raise concerns
about the effectiveness of distributional semantic models at large, for this application. Initially,
I computed w′ using the raw cosine similarities which included negative values. Repeating
these analyses having exponentiated the product of the cosine similarities and different values
of γ showed that γ = 0.10 minimized the sum of the color-semantic distances across all words.
However, this optimization did not change number of words or words with statistically signifi-
cantly color-semantic distances, it only lowered every word’s color-semantic distance. Even with
these optimizations and theoretical potential, it is questionable whether distributional semantic
models provide a suitable foundation for representing word-color associations in practice. The
relatively small value of γ I obtained suggests that the cosine similarity metric is not significant
in the calculation of the semantically-predicted location. Further, plotting these semantically-
predicted locations in LAB space shows little variation across the different words. Nearly every
word’s predicted location clusters around the origin, likely because the distribution over the
color-words is uniform.

4 Image Analysis Model

4.1 Background

The above discussed shortcomings of the distributional semantic model led me to reexamine
not only model structure, but also the kind of data that any model of word-color associations
would require to be successful. One hypothesis is that the "agreed-upon" color associations
for words might be grounded in more than just the psychological associations I relied on in
collecting the human word-color data in Section 2. As online pictures and videos have become
more ubiquitous in our lives, perhaps concepts that were once more abstract or mental are now
more grounded in the visual references found in online content.

To test this, I conduct an analysis of the colors contained in the top Google image results for
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each of the 24 words tested. The goal of this model is two-fold. First, I better understand how
the human subjects’ color annotations relate to the colors found in online images and whether
color data for certain abstract words should be supplemented by information from their visual
references. Secondly, I address the issues of small sample size, labor intensive process, and lack
of strong clustering in the human color annotations by implementing an automatic method
of obtaining comprehensive and consistent word-color association data, which will hopefully
provide a stronger foundation for other work in this domain.

4.2 Methods

Using the GoogleImageCrawler package from PyPi, I collected the top 8 image results for
each of the 24 words and extracted the colors from these images using the color conversion
packages found in OpenCV. After experimenting with a few different methods of identifying
the predominate colors in each image, including obtaining all the colors from each image and
then identifying those colors that made up x% of the pixels in the image, I found k-means
clustering to be the most effective method of arriving at a reasonable number of representative
colors. Selecting the top 15 color-clusters for each of the top 8 images returned for each word,
as identified in RGB, and then converting these values to the LAB space gave the final mapping
of the distribution of colors for each word.

4.2.1 Evaluation

I evaluated these results as described in Section 3.2.1, this time with w′ equal to the average of
the image analysis color points for each word.

4.3 Results

Figures 13 and 14 display the top 120 color values obtained for each word, plotted in LAB
space. Figures 15, 16, and 17 show the results of the evaluation method described in Section
3.2.1.

4.4 Analysis

4.4.1 Qualitative Analysis

In general, the results of this model exhibit less variance than the human color annotations,
which may suggest that this data is better suited as a foundation for predictive models than the
human responses that show minimal agreement, especially for abstract words. However, one
immediate issue is that across all plots, a significant portion of the color points are uninformative
shades of grey found in the backgrounds of the images. This is likely because usually only a
small proportion of an image contains the content of the search, and since the images were
used in their original state without any attempt to isolate the main objects whose colors we
care about, this method was unable to maximize the amount of truly representative color data
obtained for each word. With that said, for the remainder of the qualitative analysis for this
model, I disregard the greyish-black points that are not unique to any word’s LAB space.

The LAB spaces for the concrete words "lime", "cloud", "door", "sky", and "tree" cluster
around the expected colors and corroborate the hypothesis that the human color annotations for
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Figure 13: LAB plots of image analysis data.
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Figure 14: LAB plots of image analysis data.
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Figure 15: Distances between the average human color annotation w and average image
analysis color w′ for each word.

Figure 16: Scatter plot of distribution of distances obtained from randomly permuting w and
w′ across all the words tested.
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Figure 17: Histogram of distribution of distances obtained from randomly permuting w and
w′ across all the words tested.

these words are rooted in their visual references. For other words, comparing the image analysis
LAB plots to their human response counterparts reveals much more interesting information
about where humans’ color associations may be rooted. We can see that image data for the
emotion-laden word "angry" contains a cluster of bright reds that corroborates with the results
of the human annotation data. This suggests that, despite being an abstract word with no
direct reference, its psychological color association aligns with popular visual references of the
word rather than a mental understanding of the word or the way this word is used in language.
As another example, the image data for "berry" appears to be tied to the red of strawberries
and raspberries, which is the most distinctive color of the word’s real world references (other
berries are essentially black and this is a color shared across the images for all words). However,
the human color annotations for this word cluster around pinks and purples much more than
red, which suggests that, despite being a concrete word, the psychological color association for
"berry" is tied to a more abstract understanding of the word’s usage.

4.4.2 Statistical Analysis

Plotting the distances between average color value of the human annotations and the average
image analysis color for each word shows that the model’s results for "mortal", "noun", "verb",
and "equality" are statistically significant. This seems to reveal a problem with the model,
rather than provide any indication that the model is successfully finding color associations for
such abstract words. Because so much of the color data in the LAB plots for this model was
comprised of shades of grey, it is likely that the average color value for each word was skewed
towards these uninformative background colors. Simultaneously, the high variance in the human
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color annotation data for many of the words, especially these abstract ones, resulted in averages
that were also greyish colors close to the origin. The combination of these two issues results in
distances that are low, but not because the model has arrived at a unique or meaningful color
association for the word.

Further, as in the distributional semantic model, the results for many concrete words like
"lime", "tree", and "berry" are not only statistically insignificant but also have distances that
are among the highest of all the words tested. This is especially troubling given that these words
have both predictable image references that contain the expected colors (as shown in their LAB
plots) and are some of the only words for which the human color annotations showed strong
clustering and thus, a unique average color association. The emotion-laden words "angry",
"sad", and "pain", for which the human data also show strong color associations, perform even
worse than the concrete words with the largest distances overall.

5 Bayesian Representativeness Model

5.1 Background

While it appears that the previous image analysis model is inadequate as a means of predicting
color associations for words, as a dataset it may serve as a more robust foundation for other
modeling approaches. The model described in this section approaches the goal of representing
word-color associations from the opposite direction than the previous distributional semantics
and image analysis models. Rather than trying to predict a color (or color cluster) from a word,
this model determines which word a particular color point in LAB space should belong to based
on the representativeness scores (Tenenbaum & Griffiths, 2001) of points in LAB space. This
score formalizes what makes an observation (in this case, a color) a good example of a category
(word).

5.2 Methods

First, I aggregated all the color points obtained from the image analysis task in Section 4 for
all 24 words and 1000 points randomly sampled from LAB space. This provided a sample of a
total of 3880 points that are representative of the distribution of points in color space for the
selected words.

Treating this task of classifying points in color space as a supervised machine learning
problem, I estimated a Gaussian for each word using the color points belonging to that word,
as determined by the image analysis task. These Gaussian distributions act as a separate binary
classifier per word that a point could be classified as, and in each, the aim is to find p(w|x),
where w is the word and x is the point to be classified, by applying Bayes’ rule to p(w|x):

p(w|x) =
p(x|w)p(w)∑n
i=1 p(x|wi)p(wi)

The posterior, p(w|x), is the conditional probability of a word label given the color point
observed; the likelihood, p(x|w), is the conditional probability of a color observation given the
color label; the prior, p(wi), is the probability of a word label class occurring and can be set
to incorporate into the model knowledge about how the relative frequency/rarity of a word or
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concreteness/abstractness of a word might affect the classification of a color point as that word.
The likelihood is modeled as a normal/Gaussian distribution given by the following equation:

p(x|w) =
1√

(2π)3|Σ|
exp(
−1

2
(x− µ)TΣ−1(x− µ)) = N (x|µ,Σ)

where |Σ| is the determinant of the covariance matrix Σ 1
N

∑N
i=1(xi−µ)(xi−µ)T and the mean

µ is equal to 1
N

∑N
i=1 xi, where xi is the point being sampled.

Having calculated the parameters of the Gaussian for each word, I used these distributions
to calculate the representativeness score R(x,wcurrent) (Tenenbaum & Griffiths, 2001)

R(x,wcurrent) =
p(x|wcurrent)∑

other−words p(x|wother)

for each of the 3880 color points aggregated above. R(x,wcurrent) describes how representiative
the color point x is of the current category (word) wcurrent. Since these probabilities are very
small, I addressed the issue of underflow by computing R(x,wcurrent) in log space:

p(x|wcurrent)∑
other-words p(x|wother)

≈ log

(
p(x|wcurrent)∑

other-words p(x|wother)

)
= log p(x|wcurrent)− log

∑
other-words

p(x|wother)

and calculating the second term by applying the LogSumExp (LSE) function:

LSE(po) = log(po)

logmax = max(LSE(po))

LSE(po) = LSE(po)− logmax

logsum = logmax+ log
∑

exp(LSE(po))

where po = p(x|wother). Using these scores, I selected the 120 most representative points for
each of the 24 words and plotted them in LAB space.

5.2.1 Evaluation

I evaluated these results as described in Section 3.2.1, this time with w′ equal to the average of
the most representative color points for each word.

5.3 Results

Figures 18 and 19 display the 120 most representative color points obtained for each word,
plotted in LAB space. Figures 20, 21, and 22 show the results of the evaluation method
described in Section 3.2.1.
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Figure 18: LAB plots of Bayesian representativeness model results.
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Figure 19: LAB plots of Bayesian representativeness model results.
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Figure 20: Distances between the average human color annotation w and average Bayesian
representativeness color w′ for each word.

Figure 21: Scatter plot of distribution of distances obtained from randomly permuting w and
w′ across all the words tested.
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Figure 22: Histogram of distribution of distances obtained from randomly permuting w and
w′ across all the words tested.

5.4 Analysis

5.4.1 Qualitative Analysis

A qualitative analysis of the LAB plots for this model shows promising results. For each word,
we can observe distinct clusters of color points. These LAB plots are also largely free of the
uninformative "background" colors (e.g. greys or black) found in the image analysis data that
was used as input to this model, meaning that the Bayesian model has done a good job of
retaining the points that are uniquely representative of each word and discarding those that
are not.

The results for the concrete words "lime", "sky", "tree", and "door" provide preliminary
confirmation that this model works as desired, as the LAB plots for these words agree with the
colors of their prototypical object references and the human color annotations collected (bright
green, blue, dark green, and brown, respectively). The definitive clustering for "adjective",
"noun", and "verb" is more interesting, as these words describe purely human constructs and
are among the most abstract words tested. While the human color annotations for these words
exhibited high variance, the Bayesian model’s results clearly cluster around bright green, golden
yellow, and turquoise, respectively. Comparing this to the image analysis LAB spaces for these
words suggests that the results for this model may be an undue exaggeration of the image data,
as the majority of the LAB spaces for these words were truly grey and it seems like the Bayesian
model picked up on the small clusters of a few points that happened to exist in otherwise sparse
data. Because of the high variance in the human annotation data, it is difficult to determine
whether the results of this model on these words reflect human associations. However, the
human color annotations for "verb" seem to roughly cluster around the same greenish-blues
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that this model outputs for "verb".
Most promising are the results for the abstract words "equality" and "fun". This model

shows that the most representative points for the word "equality" are primarily bright pinks
and magenta with a smaller cluster of blue. These are colors that are traditionally associated
with female and male and that are tied to the most commonly addressed subset of equality,
gender equality. The most representative points for "fun" are divided into a cluster of bright,
saturated pinks and a cluster of orange-yellows–colors that are typically associated with the
positive emotions that are inherent to the word "fun" (Hemphill, 1996). These results on
abstract words that truly lack a visual reference in a way that some of the other abstract
words (e.g. "angry", "sad", or "pain") do not, show that this model is able to produce color
annotations that are grounded in some understanding of word meaning. These results are
especially impressive given that the image data used for these words showed a decent amount
of variance, which suggests that the model was able to find structure among the data even
when there visually appeared to be none. The results for these words are also unique in that
they are the only words for which the model determined more than one representative color.
This seems to be a desirable feature for a model of word-color associations, as one would expect
certain words to be associated with more than one color (e.g. generally bright or dark colors)
and might get misleading color annotations from a model that is only able to predict a single
color.

Still, some words that exhibit strong agreement in their human color annotations do not
have these psychological associations reflected in the results of this model. While the black
clusters returned for "rain" and "sad" are not necessarily amiss as these words have darker,
more negative connotations, they do not corroborate with the human color annotations, which
both strongly clustered around shades of blue. This is also odd because "rain" is a concrete
word tied to water which is typically represented as being blue, and "sad" has long been tied
to the color blue through some of our most popular linguistic metaphors (e.g. "I’m feeling
blue"). Another disagreement is seen in the results for the word "pain", which this model
finds is best represented by shades of dark bluish-purple. However, "pain" is an emotion-laden
word for which the human color annotations show strong associations with the color red. One
would also expect this word to be associated with red through images of blood or the heart, as
this how humans experience pain. It is more difficult to say what one would expect the color
annotations for the abstract words "running" and "soaring" to be. Regardless, my results show
that this model was generally less effective at predicting colors for these words, as the most
representative points for "running" are mostly grey with a few light blues and for "soaring"
are mostly black with a hint of sky blue. This is a little odd given that these are words that
are easily represented in images and should include significant amounts of the environment
the activity is taking place in, which is what I hypothesized might inform the human color
associations for these words.

5.4.2 Statistical Analysis

The distances between the average human color annotations and the average Bayesian repre-
sentativeness color show that the model’s output for the words "big", "angry", and "justice"
are statistically significant, with "universe" and "door" very nearly so. For "big" and "justice"
this seems to be indicative of the same issue found in the image analysis model, where the
combination of high variance in the human color annotations for these words and the most rep-
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resentative points for this model clustering around the origin (especially for "justice") trivially
results in low distance values. However, the statistical significance of "angry" is among the first
promising quantitative results. Both the LAB spaces for this model and the human annotation
data strongly cluster around the same shades of red, showing that this model’s prediction aligns
with the psychological color association. Further, we can see that some of the largest distances
are for abstract, human constructs like "adjective" and "noun", which is more reflective of the
high variance in the human color data than previous models’ results. Still, the results for a
number of concrete words are not statistically significant, despite the fact that my qualitative
analyses show promising results. I address these concerns in the following section through a
comparative analysis of the results of the three models presented in this paper.

6 Comparative Analysis & Discussion
Figure 23 summarizes the results of the three models described in this paper. At first glance,
we can see that color predictions produced by the distributional semantic model have the least
variation across the tested words and are all mostly the same shade of pinkish-brown. The
results of the image analysis model show slightly more variation in color output, but is still
limited to darker shades of neutral colors. Only with the Bayesian representativeness model
do we finally see more distinctive, saturated color predictions. For the concrete words "lime",
"angry", "berry", "cloud", and "sky" these color predictions even match the colors of the
real world references that one would expect to ground these words’ color associations. This
qualitative assessment alone shows much promise for the use of Bayesian representativeness.

Though the models fared poorly according to their individual statistical analyses, comparing
the distance between the average human color annotation and the average color of each model’s
response for particular words further suggests that my Bayesian representativeness model is
successful as a computational model for human word-color associations. In the results for the
concrete word "lime" we can see that the distance between human annotation and the model’s
prediction goes from around 90 for the distributional semantic model, to around 45 for the im-
age analysis model, and finally down to around 30 for the Bayesian representativeness model.
We see similar results for the word "angry", with around 55 for the distributional semantic
model, around 50 for the image analysis model, and less than 20 for the Bayesian model. For
"tree", the distributional semantic model has a distance of around 50, the image analysis model
a distance of around 40, and the Bayesian model a distance of around 30. Even when the dis-
tributional semantic model achieved a reasonable color prediction for a word, as in the case
of the word "door", the Bayesian model was far superior in its distance to the average human
color annotation (4̃0 vs. 2̃0). The Bayesian model performs better even for the abstract words
"fun", "justice", "running", and "verb". The fact that this model consistently produces lower
distances for concrete words whose human color annotations show strong clustering, means that
this model is in fact capturing humans’ color associations for these words. Further, the Bayesian
representativeness model still improves upon the performance of the image analysis model for
all the above mentioned words. This means that selecting colors from reference images alone is
not enough to model human word-color associations. The Bayesian representativeness model
is able to discern valuable structure within the input data that makes its output a better rep-
resentation of the human associations we seek to model.
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Figure 23: Multi-bar plot of the distances between the average human color annotation and
the average color of each model’s response. In each group of bars for each word, the left-hand
bar shows the results of the distributional semantic model, the middle bar shows the results of

the image analysis model, and the right-hand bar shows the results of the Bayesian
representativeness model. The bars are colored with the average color produced by the model

for that word.

This comparative analysis also suggests that the problem in my individual statistical analy-
ses may lie in having evaluated the models against the human color annotations I collected. Of
course, human color annotations should provide the ultimate comparative baseline, as a good
computational model of human word-color associations should emulate humans’ representation
of these modalities. However, it seems that a significant issue with this dataset was the limited
number of responses I was able to collect through my networks. This small sample size may
have led to especially high variance in the responses for many of the tested words, resulting in
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average color annotations that were not very useful as a comparative baseline for my models’
performances. One solution would be to conduct the statistical analyses against each of the
human color annotation responses, rather than their averages. An alternative human evaluation
procedure, where humans rate the results of each model, would also help to verify the qualita-
tive analyses detailed in this paper. However, I believe efforts to obtain a much larger set of
human word-color annotations would be most useful. In the future, in addition to addressing
the areas of improvements covered in Section 3.5, I plan to use Amazon Mechanical Turk to
obtain a greater number of color annotations for a larger set of words. Additionally, this would
allow me to study how color associations might differ across different populations, as in this
work, I was only able to survey western, college-educated adults.

7 Conclusion
In this work, I develop a computational model for human word-color associations that is
grounded in humans’ visual experience of color, rather than a lexical proxy for color. To
do this, I first establish a preliminary dataset of human color annotations for a set of words
that represents varying degrees of abstractness. I find that while image analysis provides a
more automatic, less labor-intensive alternative to obtaining color data, it does not sufficiently
represent humans’ color associations. Future work to develop a larger set of human color anno-
tations through crowd sourcing, and perhaps supplementing this with color data from images,
will provide the foundation necessary to develop more robust models of human word-color
associations.

Of the distributional semantic, image analysis, and Bayesian representativeness models that
I implement in this paper, I find that the Bayesian representativeness model does the best
job of producing unique color annotations for a variety of word types and outperforms the
distributional semantic and image analysis models in terms of proximity to average human color
association for these words. While distributional semantics has been the standard for previous
models of human word-color associations, my results show that the Bayesian representativeness
model is better able to discern meaningful structure in input color data that allows it to more
closely emulate humans’ color associations for words.
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