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A B S T R A C T   

There is substantial variability in the expectations that communication partners bring into interactions, creating 
the potential for misunderstandings. To directly probe these gaps and our ability to overcome them, we propose a 
communication task based on color-concept associations. In Experiment 1, we establish several key properties of 
the mental representations of these expectations, or lexical priors, based on recent probabilistic theories. Asso
ciations are more variable for abstract concepts, variability is represented as uncertainty within each individual, 
and uncertainty enables accurate predictions about whether others are likely to share the same association. In 
Experiment 2, we then examine the downstream consequences of these representations for communication. 
Accuracy is initially low when communicating about concepts with more variable associations, but rapidly in
creases as participants form ad hoc conventions. Together, our findings suggest that people cope with variability 
by maintaining well-calibrated uncertainty about their partner and appropriately adaptable representations of 
their own.   

1. Introduction 

From jargon-filled scientific communication (Anderson-Cook, 2010; 
Bullock, Colón Amill, Shulman, & Dixon, 2019; Martínez & Mammola, 
2021) and medical consultations (Castro, Wilson, Wang, & Schillinger, 
2007; Korsch, Gozzi, & Francis, 1968; McCabe & Healey, 2018) to the 
linguistic battlefields of political discourse (Lakoff, 2006; Wodak, 1989), it 
can often feel as if we are speaking different languages. Speakers not only 
bring different perspectives, expertise, and background knowledge into a 
conversation, they may even have different expectations about what words 
mean (Labov, 1973; Marti, Piantadosi, & Kidd, 2019; McCloskey & 
Glucksberg, 1978). For example, cognitive psychologists, doctors, and 
lawyers all commonly use the word “trial” in professional settings but refer 
to different concepts (a stimulus presentation, a clinical study, and a court 
appearance, respectively). Such lexical variability is a troubling and 
pervasive challenge, setting the stage for misunderstandings and other 
communication breakdowns. How do we manage to understand each other 
when we cannot be sure that we’re starting on the same page? 

Modern theories have addressed this challenge by viewing communi
cation not as a unitary act of transmission but as an ongoing collaborative 
process where interlocutors must coordinate to reach mutual understanding 

over time (Clark, 1996; Davidson, 1986; Krauss & Fussell, 1996; Reddy, 
1979; van Arkel, Woensdregt, Dingemanse, & Blokpoel, 2020). These 
theories acknowledge idiosyncrasy, misunderstanding, and variation in 
literal meaning across partners and communities as a fundamental and 
unavoidable aspect of language use (Clark, 1998; Elman, 2004; Schuster & 
Degen, 2020; Wilson & Carston, 2007). Still, a central open question has 
concerned the underlying mental representations of signal meaning that 
support this collaborative process. One hypothesis raised by recent prob
abilistic theories of communication is that the ability to anticipate and 
flexibly overcome misunderstandings depends on each speaker’s initial 
lexical uncertainty, reflecting prior expectations about what messages may 
or may not mean to one’s partner (Bergen, Levy, & Goodman, 2016; 
Brochhagen, 2020; Hawkins et al., 2022; Potts & Levy, 2015). This idea 
builds on the classical construct of a mental lexicon containing signal- 
meaning mappings, allowing words to be grounded in external referents. 
For example, a speaker would consult their lexicon to evaluate the extent to 
which a given word like “dog” applies to a given animal they’ve encoun
tered in the world. Lexical uncertainty replaces a fixed dictionary of 
mappings with a probability distribution over possible mappings that 
different partners may be using. For example, there may be more uncer
tainty about whether a given partner will share a given meaning for some 
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technical jargon than whether they will share a given meaning for “dog.1” 
While lexical priors have played a key explanatory role in compu

tational models of communication, they have been challenging to 
measure and manipulate directly in experimental work. Classical studies 
of coordination and communication have typically been restricted to 
stimuli like ambiguous tangram shapes (Clark & Wilkes-Gibbs, 1986), 
line drawings (Krauss & Weinheimer, 1964), or complex scenes (Weber 
& Camerer, 2003) where lexical priors fall in a narrow, carefully- 
calibrated band of uncertainty between completely random (e.g., 
white noise) and completely universal (e.g., a photograph of a proto
typical dog). Despite the narrow range of these stimulus spaces, it has 
been possible to isolate certain effects that are consistent with accounts 
of lexical uncertainty. For example, there is evidence that the codeability 
of tangrams (the number of distinct descriptions elicited; Hupet, Seron, 
& Chantraine, 1991), and the shared expertise of speakers (whether 
participants are equally familiar with New York landmarks; Isaacs & 
Clark, 1987) both affect the time it takes for speakers to reach mutual 
understanding. Still, there are many reasons to explore lexical uncer
tainty in richer stimulus spaces and other communication modalities. 
Richer stimulus spaces make it possible to observe and manipulate 
lexical priors spanning a broader range of uncertainty, from the most 

idiosyncratic to the most universal. Other communication modalities 
present a further opportunity to overcome inherent challenges associ
ated with natural language, where probability distributions must be 
estimated from sparse samples and poor coverage over the full (infinite) 
spaces of possible utterances and meanings. For example, measures of 
codeability for referential meaning (Hupet et al., 1991) are based on a 
single description from each participant, where most descriptions 
appear only once in the data set. 

1.1. Color-concept associations as a window onto lexical uncertainty in 
communication 

To proceed in the face of these methodological challenges, we pro
pose a communication paradigm based on color-concept associations. 
While color has commonly been used as the target of reference in 
communication tasks (Caldwell & Smith, 2012; Monroe, Hawkins, 
Goodman, & Potts, 2017; Morin, Müller, Morisseau, & Winters, 2022; 
Winters & Morin, 2019), we instead ask participants to use a set of color 
chips as their communication modality (e.g., Roberts & Clark, 2018) to 
communicate the identity of a target concept in a context of distractors 
(e.g. lemon, happiness). While these color chips clearly differ in important 
ways from natural language utterances as a communication modality 
(see General Discussion), we argue that color-concept associations 
nevertheless provide a number of advantages for examining the conse
quences of lexical uncertainty. First, color-concept associations natu
rally span a wide range of possible priors (Fig. 1). For example, some 
concepts, like lemon, are expected to have strong, nearly universal color 
associations, reflected in tight priors P(color| lemon). Meanwhile, other 
concepts, like fairness are expected to have more idiosyncratic and 
distributed associations, reflected in looser and more spread-out priors 

Fig. 1. Example color associations. We depict the response distribution of the 10 concepts with lowest and highest variability. The width of each color bar corresponds to the 
proportion of a particular color response for a given word. Colors are presented in a fixed order across bars but colors that received no responses are not visible in the given bar. 
We report two estimates of variability for each concept (see Methods; in both cases, higher is more variable). 

1 While lexical uncertainty is typically defined as a joint distribution over the 
full set of signal-meaning tuples P(m, s) (see Appendix A), it can also be 
expressed as the conditional uncertainty over meanings for a given signal, P(m| 
s), or as the conditional uncertainty over signals for a given meaning P(s|m), 
since the baseline probabilities P(m) and P(s) are of lesser interest. We will 
loosely use lexical prior and lexical uncertainty to talk about this whole family of 
expressions, but the final conditional expression (s|m) is particularly useful for 
eliciting priors. 
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(Hutchings, 2004). Prior studies eliciting such associations have found 
systematic differences across different abstract concepts (Barchard, 
Grob, & Roe, 2017; Guilbeault et al., 2020; Mohammad, 2011; Rathore, 
Leggon, Lessard, & Schloss, 2019; Volkova, Dolan, & Wilson, 2012), 
which may also vary cross-culturally (Hupka, Zaleski, Otto, Reidl, & 
Tarabrina, 1997; Tham et al., 2020). We build on the elicitation methods 
developed in prior work while also introducing several methodological 
innovations to answer novel questions arising in the context of 
communication. Second, while natural language utterances are typically 
understood to be embedded in a complex and high-dimensional se
mantic space (Jones & Mewhort, 2007; Pennington, Socher, & Manning, 
2014), color signals are embedded in a much lower-dimensional space 
with better-validated psychometric structure, which allows for denser 
sampling and explicit measurements of variation. Finally, color remains 
an important modality of natural communication in its own right (Riley, 
1995), as evidenced by the deliberate choice of color palettes in graphic 
design (Marcus, 1982) and marketing (Labrecque & Milne, 2011), or our 
everyday metaphorical appeals to color when trying to convey complex 
emotional states that are challenging to describe with words (Lakoff & 
Johnson, 1980; Meier & Robinson, 2005; Van Leeuwen, 2011). 

1.2. Three foundational questions about lexical uncertainty 

We use the domain of color-concept associations to evaluate three 
foundational hypotheses about lexical uncertainty raised by recent 
theories of communication. First, and most fundamentally, do in
dividuals actually maintain an internal probability distribution repre
senting their uncertainty about associations (Fig. 2, top row), or do they 
only represent a point estimate giving their strongest association (Fig. 2, 
bottom row)? Second, we ask: is the population relatively homogeneous, 
composed of individuals sharing similar representations (Fig. 2, right 
column) or is the population actually more heterogeneous and 

idiosyncratic (Fig. 2, left column)? Third, when it comes time to use 
these representations in a communicative context, is a given individual’s 
representation purely egocentric or do they maintain well-calibrated 
expectations about whether their representation will be shared by 
other agents? 

While we unpack these hypotheses and operationalize their pre
dictions more thoroughly in subsequent sections, it is worth noting here 
that there is theoretical precedent for these questions not only in the 
communication literature but also in the literature on color-concept 
associations. For example, the color inference framework introduced by 
Schloss (2018) proposes that individuals store and continually update 
their color-concept associations from their experiences in the world. 
Under this framework, every concept has a corresponding association 
space with some weight placed on each possible color. These weights 
effectively give rise to an internal probability distribution that can, for 
example, be used to generate appropriately discriminative colors to 
convey different meanings (Mukherjee, Yin, Sherman, Lessard, & 
Schloss, 2022). Such resonances between models of meaning across the 
domains of natural language communication and of color-concept as
sociations provides a further theoretical motivation for using the color 
domain to explore representations of lexical uncertainty. 

In Experiment 1, we begin to explore basic theoretical properties of 
lexical uncertainty by eliciting color associations for a variety of con
cepts. By eliciting multiple responses from each participant, we were 
able to compare the population-level variability of responses to the in
ternal variability within each individual. And by asking participants to 
estimate the extent to which others will share the same associations, we 
were able to probe the extent to which any given individual represents 
the population distribution, thus forming a basis for successful 
communication. Next, in Experiment 2, we directly measure the 
downstream effects of lexical priors on ad hoc coordination using an 
interactive communication task. Pairs of participants were asked to 

Fig. 2. Schematic of candidate hypotheses and corresponding predictions. We explore a 2 × 2 space of proposals about how color-concept associations are internally 
represented by individuals (as a fully calibrated probability distribution representing uncertainty, or as a sparser point estimate) and how much these associations differ across 
individuals in the population (from a fully homogeneous population to a more heterogeneous population). These hypotheses make distinct predictions about the relationship 
between the variability of associations measured within an individual and across a population, which we evaluate in Experiment 1. 
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communicate about sets of concepts using color chips as signals. Criti
cally, we used the corpus of associations we elicited in our first experi
ment to construct contexts that manipulated participants’ initial priors: 
some associations were strongly shared across the population while 
others were more idiosyncratic. Taken together, our work suggests that 
people maintain well-calibrated prior expectations about the potential 
for miscommunication and use these flexible priors to rapidly adapt to 
their partner. 

2. Experiment 1: Eliciting color-concept association priors 

We begin by eliciting color association priors for concepts spanning a 
wide range of population variability. While there are a number of 
existing datasets that may be used to assess variability at the population 
level (e.g. Mohammad, 2011; Tham et al., 2020; Volkova et al., 2012), 
there were three specific desiderata for our work that were not satisfied 
by these existing datasets. First, we required participants to not only 
choose the color they themselves most associated with a concept, but 
also to predict whether that association would be shared by others. Such 
an explicit query about expected agreement was not included in the 
protocol of previous studies. Second, while previous studies revealed 
differences in population-level variability, it remains unclear whether 
such variability arises within individuals (e.g. from internal probability 
distributions) or only at the population-level (e.g. from individuals with 
different point estimates). To distinguish between these possibilities, we 
required multiple blocks of judgements for each participant; previous 
variants of the task only collected a single best exemplar per participant. 
Finally, we required a set of stimuli that would span a wide range of 
expected association variability from strong (e.g. “lemon”) to weak (e.g. 
“fairness”). Previous studies have focused on smaller sets of concepts (e. 
g. Tham et al., 2020, used only 59 abstract concepts, screening out words 
that corresponded to concrete objects like “lemon”) or only collected 
coarse-grained responses for basic-level colors (e.g. Mohammad, 2011) 
asked participants to choose from the 11 color terms from Berlin & Kay, 
1969). 

2.1. Methods 

2.1.1. Participants 
We recruited 733 participants from Amazon Mechanical Turk, 

restricting location to the United States. After implementing our pre- 
registered exclusions criteria, we were left with data from 485 of these 
participants. 129 participants were excluded for failing one of four 
attention checks that were interspersed throughout the experiment. 
These attention checks asked participants to provide color associations 
for basic-level color words (e.g., “red”, “orange”, “yellow”). The first two 
attention checks were embedded in a block of initial practice trials while 
the other two were inserted randomly into the experiment (one in the 
first half, and one in the second half). Participants who did not provide a 
color within a (relatively permissive) set of valid responses were 
immediately removed from the experiment for the base payment. We 
also removed 5 additional participants who provided the same response 
for more than three trials in a row, or consistently responded in less than 
1000 ms, both of which indicated blind guessing without reading the 
stimulus prompt. Finally, an additional 65 participants were excluded 
due to colorblindness. To test color vision, we presented participants 
with three Ishihara plates that detected common red-green deficiencies 
or more extreme colorblindness. We excluded only those participants 
whose responses indicated more extreme colorblindness (or 
inattention). 

2.1.2. Stimuli 
We considered two factors when selecting our stimulus set. First, we 

required a relatively large number of concepts to control for possible 
item effects. Second, we needed these concepts to span a wide range of 
different priors (i.e. different color associations, with different levels of 
variability), but were unable to know these priors beforehand. We thus 
considered a set of 5500 candidate concepts drawn from the Glasgow 
Norms dataset (Scott, Keitel, Becirspahic, Yao, & Sereno, 2019), which 
provides ratings for words on 9 different scales, including properties like 
imageability and concreteness. Concreteness represents the degree to 
which something can be experienced by the senses, while imageability 
represents the extent to which a word invokes a mental image.2 We used 
these measures as rough proxies for the level of variability in color as
sociations we could expect for a concept and selected a balanced set of 
200 concepts from this candidate set using the following procedure. We 
began by imposing a familiarity threshold (familiarity ≥4.0) to ensure 
that the majority of participants were likely to know the concept that 
each stimulus word referred to. Next, we selected the 500 words with the 
highest concreteness ratings (the concrete set) and the 500 words with 
the lowest concreteness ratings (the abstract set). We then sampled 100 
words from each set to obtain a roughly uniform distribution of 
imageability. Lastly, we conducted a manual pass over the resulting 200 
words to ensure that they were consistent in part of speech (e.g., con
verting adjectives to their noun form) and to replace any that were 
offensive, confusing, or redundant with one another. These 200 words 
were randomly divided into 5 subsets, each containing 20 words from 
the abstract set and 20 words from the concrete set. 

2.1.3. Task, design, & procedure 
Each participant was assigned one of the 5 distinct word sets. On each 

trial, a single word was presented with a set of 88 (virtual) Munsell chips 
sampling a wide range of color space.3 Participants were instructed to click 
the color they most associated with the target word. To control for differ
ences in individuals’ color displays, participants were instructed to take the 
experiment on a desktop or laptop computer and ensure that their screens 
were set to their default brightness and color temperature (e.g. to turn off 
programs like Flux). Participants were also screened through a pre-test 
asking them to select color swatches for words like ‘blue’ and ‘red’, 
ensuring that any differences in color displays lay within tolerance of color 
boundaries (see Supplemental Figs. S3-S5). To estimate internal variability, 
we presented these words in a blocked sequence. After providing responses 
for all 40 words in the set, presented in randomized order, participants 
repeated the task a second time (Fig. 3A). On the second block, participants 
were also asked: “How strongly do you expect others to share your color 
association for this word?” We presented a slider ranging from “not at all” 
(most people will have a different color association than I do), to “very 
strongly” (most people will have the same color association as I do) with a 
midpoint labeled “somewhat” (roughly the same number of people will 
have the same or different color associations as I do). This question allowed 
us to compare the true proportion of shared responses to each participants’ 
expectations. 

2 Though these two measures are highly correlated with with each other (r =
0.93), they are considered distinct aspects of a word’s semantics (Paivio, Yuille, 
& Madigan, 1968; Richardson, 1975). For example, emotion words like anger 
may be rated low on concreteness but high on imageability; conversely, some 
scientific or medical concepts like diabetes may be high on concreteness but low 
on imageability  

3 The World Color Survey (Kay, Berlin, Maffi, Merrifield, & Cook, 2009) used 
the set of 320 chips (40 evenly spaced hues crossed with 8 levels of lightness) 
proposed by Lenneberg and Roberts (1956). Later studies down-sampled this set 
to 160 (Heider, 1972) by removing hues at intermediate levels of 2.5 and 7.5, 
and then further down-sampled to 80 (Gibson et al., 2017; Zaslavsky, Kemp, 
Tishby, & Regier, 2019). Our 88-chip set was derived by adding 8 achromatic 
chips to the 80-chip set from Gibson et al. (2017), allowing participants to 
select greyscale values. 
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2.1.4. Evaluation Metrics 
We measured variability in two different ways: (1) the entropy of the 

discrete response distribution and (2) the average pairwise similarity 
between responses in color space.4 Our entropy measure was computed 
on the distribution of response counts over the 88 Munsell chips, using 
the Schurmann-Grassberger estimator (i.e. adding pseudo-counts of 1/ 
88 to each bin). Entropy is expected to be high when responses are 
spread out across many different color chips, and low when participants 
all concentrate their responses on a small number of colors. Our pairwise 
distance measure is computed by taking the perceptual similarity ΔE 
(where E stands for Empfindung, German for “sensation”) between colors 
in the psychometrically-validated CIELAB color space. It is close to 
0 when colors are perceptually similar (colors with ΔE < 1 are not able 
to be discriminated by the human eye), and reaches values close to 100 
for extremely dissimilar colors. We use the CIE2000 definition of ΔE, 
which accounts for distortions in perceptual uniformity (Sharma, Wu, & 
Dalal, 2005). For each word, we derived a measure of internal vari
ability, internal ΔE, by taking the ΔE between the color chosen by a given 
participant in the first block and the second block. We also obtained a 
word-level measure of population variability, population ΔE, by taking 
the average pairwise ΔE among every pair of color responses provided 
by different participants.5 

2.2. Results 

2.2.1. Associations are more variable for abstract words 
We begin by examining our use of concreteness and imageability as 

proxies for constructing stimuli that elicit a wide range of associations. 
These proxies were motivated by recent work suggesting that the extent 
to which people share associations for a concept may be related to the 
extent that they share the same sensory experiences for that concept, such 
that abstract concepts have more variable associations than concrete 
and imageable concepts. For example, recent analyses of Google Image 
search results have found that raw color distributions found in the top 
images retrieved for abstract terms are indeed more variable on average 
than those measured for concrete terms (Desikan et al., 2020). At the 
same time, however, the relationship between these measures is likely 
more complex: recent work has also found coherent relationships among 
abstract concepts (Guilbeault et al., 2020) and some abstract words may 
nevertheless have strong associations (e.g. anger is red and sadness is 
blue). To assess this relationship in our dataset, we constructed two 
regression models predicting our two population variability measures 
(entropy and ΔE) from the corresponding concreteness and imageability 
ratings reported by (Scott et al., 2019) for each word (see Appendix B, 
Fig. S1). 

We found that both concreteness and imageability are independently 
correlated with entropy (Spearman rank correlation ρ = − 0.51, p <
0.001 and ρ = − 0.54, p < 0.001, respectively), suggesting that color 
associations for more abstract words were much more variable. How
ever, in a combined model including both predictors we only found a 
main effect of imageability (b = − 0.31, t(191) = − 3.19, p = 0.002), 
with no independent contribution of concreteness (b = 0.03, p = 0.74), 
suggesting that the information provided by concreteness may be 
redundant. Similarly, both concreteness and imageability are indepen
dently correlated with ΔE (ρ = − 0.53, p < 0.001 and ρ = − 0.52, p <
0.001, respectively), but we found the opposite relationship in the 
combined model: concreteness was a weak but significant predictor of 
ΔE (b = − 1.22, t(191) = − 2.07, p = 0.039), while imageability was not 
(b = − 0.8, p = 0.26). Together, these findings support a strong negative 
relationship between abstractness and variability, regardless of how we 
measure them, but we were unable to distinguish the unique contribu
tions of concreteness from those of imageability due to their high 
collinearity in the combined model. Importantly, while they were useful 
for choosing stimuli, neither measure was a particularly good proxy for 
population variability in absolute terms. We therefore use our own 
direct estimates of variability (i.e. entropy and ΔE) to construct high and 

Fig. 3. Design and results of Experiment 1. (A) We elicit two associations from each participant for a given word (1st block and 2nd block). On the second block, participants 
additionally estimate the probability that others would provide the same association. Internal ΔE is measured as the similarity between the two responses provided by the same 
individual, while population ΔE is measured between different individuals. (B) Internal ΔE of color associations for each concept tracks population variability ΔE, although a 
single participants’ responses are somewhat closer together than expected from sampling from the population distribution. (C) Expectations are well-calibrated to the true 
agreement odds. Error bars for each concept are bootstrapped 95% CIs. 

4 We also pre-registered a procedure to estimate parametric variability by 
fitting a multi-dimensional Gaussian distribution over color space, but chose to 
replace this measure by the ΔE measure. It is highly correlated with the 
Gaussian measure, r = 0.861, but better accounts for metric distortions in color 
space and the existence of multi-modal response distributions.  

5 We may define population ΔE in several ways, depending on where the 
different participants’ responses are drawn from. For example, block 1 ΔE 
compares responses from different participants in the first block Δ(c1i,c1j), 
block 2 ΔE restricts to the second block, Δ(c2i,c2j), and a “cross-block” ΔE 
compares responses in one block to those obtained from other participants in 
the other block, Δ(c1i,c2j). These different ways of measuring population ΔE are 
highly correlated (r = 0.994 between the block 1 and cross-block versions; r =
0.993 between the block 2 and cross-block versions; r = 0.973 between the 
block 1 and block 2 versions), and results are invariant to this choice. While 
Fig. 3A shows the block 1 variant to make it clear that the axis of comparison is 
across different participants, we report results using the version that pools 
together all responses across both blocks to get the most highly powered 
estimate. 
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low variability conditions in Experiment 2, rather than relying on 
coarser concreteness or imageability norms. 

2.2.2. Population variability reflects individual uncertainty 
Given that we successfully elicited associations with different levels 

of variability in the population, we now proceed to ask how this vari
ability is related to the internal representation of color-concept associ
ations within each individual. First, we ask whether individuals 
maintain a single point estimate representing a single strongest associa
tion or instead maintain a full internal probability distribution over 
different associations. Second, we ask whether the population is rela
tively homogeneous, where all individuals maintain roughly the same 
representations, or whether it is more heterogeneous, containing in
dividuals with somewhat differing representations (see Fig. 2). To 
evaluate this space of candidate hypotheses, we leveraged our blocked 
design to compare internal variability against population variability. 

In particular, we draw on the notion of the “crowd within” (Fiechter 
& Kornell, 2021; Hourihan & Benjamin, 2010; Rauhut & Lorenz, 2011; 
Steegen, Dewitte, Tuerlinckx, & Vanpaemel, 2014; van Dolder & van 
den Assem, 2018; Vul & Pashler, 2008) that has recently been proposed 
for phenomena like forecasting and estimation in the decision-making 
literature (see Herzog & Hertwig, 2014, for a review). The “crowd 
within” views a judgement as a sample from an (implicit) probability 
distribution, explaining why the same participant may make different 
judgements at different times, and why averaging together multiple 
judgements from the same participant may yield better predictions (an 
analogue of the “wisdom of the crowd” where judgements are averaged 
across different participants). Thus, while it is unrealistic to perfectly 
reconstruct any single individual’s prior distribution from only two re
sponses per concept, a key insight of this literature is that we do not need 
to reconstruct the full distribution maintained by any single participant. 
It is statistically sufficient to compare the distance between a small 
number of samples obtained from a given participant for a given concept 
(internal ΔE) against the expected null distribution of distances derived 
from different participants for that concept (population ΔE; see Fig. 3A). 

Each hypothesis predicts a different pattern of relationships between 
internal ΔE and population ΔE (see Fig. 2). The distinction between 
different internal representations concerns whether internal and popu
lation variability are related across concepts. The point estimates repre
sentation allows for some response noise but assumes such noise is 
identical across all concepts, hence internal variability should be inde
pendent of population variability and we would expect similar internal 
ΔE across blocks for all concepts.6 Meanwhile, the internal probability 
distribution account predicts that individuals maintain different distri
butions for different concepts, which vary in their internal variability, 
hence there should be a systematic relationship between internal ΔE and 
population ΔE (regardless of whether the population is more homoge
neous or heterogeneous). The distinction between population homoge
neity and heterogeneity, on the other hand, concerns the extent to which 
population variability is higher or lower overall than internal vari
ability. In the extreme case where every participant i shared the same 
distribution of color associations P(r|c) in a perfectly homogeneous 
population, then the entire dataset of responses rij would be drawn from 
the same distribution rij ~ P(r|c) and the distances between two samples 
taken from the same participant i, Δ(ri1, ri2), would be the same, in 
expectation, as the distances between samples taken from distinct par
ticipants, Δ(r1j, r2j). In other words, we may obtain a distribution of the 
expected variation in any pair of sampled responses, under the null 
hypothesis of a homogeneous population, and compare the extent to 
which the actual pairs of samples we obtained from the same participant 

are more or less similar than expected under this null.7 

Our findings are shown in Fig. 3B. We found that the average ΔE 
between an individual participant’s responses was strongly correlated 
with the overall population’s ΔE, r = 0.81, t(192) = 19.04, p < 0.001. 
That is, for concepts where the population as a whole most disagreed 
with one another, each individuals’ own responses across blocks also 
tended to disagree with one another. This pattern was only predicted by 
the internal distribution account and not the point estimates account, 
which cannot explain why there would be such systematic differences in 
internal ΔE across concepts. At the same time, we found that internal 
variability was lower than population variability overall; the estimated 
intercept in a linear regression significantly differed from zero, b = −

17.3, t(192) = 20.8, p < 0.001, consistent with a more heterogeneous 
account where not all participants shared exactly the same internal 
distribution. A homogeneous population would be closer to the line of 
unity. 

2.2.3. Expectations about others are well-calibrated 
Our results so far support the view that each individual implicitly 

maintains a full probability distribution or prior for each concept, which 
tracks the true population variability but which tends to be somewhat 
narrower on average. However, it is unclear whether this representation 
has a social component. In principle, communicative success depends on 
each individual’s expectations about how their partner will understand 
(or misunderstand) a given message, not just whether individuals 
represent similar meanings. This distinction is crucial for understanding 
the consequences of lexical priors for resolving misunderstandings in 
communication. If individuals are unable to represent whether others 
will share the same prior (whether it is a point estimate or a distribu
tion), they might over- or under-estimate agreement and inhibit suc
cessful communication.8 To assess whether participants maintain well- 
calibrated social expectations, we turned to the expected agreement 
measure collected on the second block. For each expected agreement 
rating in our dataset, we calculated the log odds that other participants’ 
color responses actually matched that participants’ reported color as
sociation, log(p/(1 − p)), representing ground-truth agreement. We 
found a strong correlation between expected agreement and true 
agreement (Pearson’s correlation r = 0.88, t(197) = 25.5, p < 0.001 and 
Spearman’s rank correlation, ρ = 0.87, p < 0.001), suggesting that in
dividuals’ expectations about the others’ were remarkably well- 
calibrated to the true statistics (see Fig. 3C).9 

6 More formally, under this hypothesis, we could suppose an individual i’s 
responses j are expected to be drawn from rij ∼ N (ci, ε) where ci is their point 
estimate for the concept and ε captures a fixed probability that they may click 
on nearby color chips rather than the precise value ci. 

7 There exist other possible explanations for a smaller internal ΔE, although 
we have taken measures to minimize them; for example, if participants’ 
response was strongly influenced by their response on the first block, then their 
samples may violate the assumption of independent draws from the distribu
tion. However, such influence is unlikely given the number of intervening 
stimuli in each block and the relatively long delay between samples. We return 
to this concern in the discussion.  

8 Of course, there are multiple ways for well-calibrated social expectations to 
be achieved. One possibility is that individuals maintain their own idiosyncratic 
associations, based on their unique experiences, but also track the degree of 
divergence from the overall population and correct for it in social settings using 
theory of mind (i.e. they are aware that their associations are idiosyncratic). 
Another possibility is that agents are egocentric (i.e. maintain a single internal 
distribution of associations) but have tuned their own internal distribution over 
time to match the population distribution. Distinguishing between these 
representational possibilities is outside the scope of this paper.  

9 While the log-odds linking function is orthogonal to our question of interest, 
we note that it is consistent with previous observations about how participants 
spontaneously map sliders to logarithmic rather than linear scales (e.g. Griffiths 
& Tenenbaum, 2005, 2007; Landy, Silbert, & Goldin, 2013). 
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3. Experiment 2: The consequences of lexical priors for 
communication 

Experiment 1 established several key properties of word-color asso
ciations: more abstract words have more variable associations, this 
variability is represented within individuals, and individuals can accu
rately predict whether an association is likely to be shared with others. 
These properties are precisely those that probabilistic models of 
communication have associated with lexical uncertainty, the recognition 
that particular word meanings or concepts may or may not be shared 
with others. Such uncertainty may allow for more flexible adaptation 
than simple point estimates: individuals may be able to anticipate po
tential confusions ahead of time, and possess rich enough knowledge 
about likely alternative associations to rapidly adjust their expectations 
on the fly. Here, we examine the downstream effects of these priors in a 
Pictionary-like communication task where participants sent color 
swatches as messages that allowed their partner to guess a target word. 
We hypothesized that target words with nearly universal color associ
ations, reflected in strong, tightly overlapping priors, would provide a 
common foundation and allow for instant communicative success. 
Meanwhile, words with more variable or uncertain color associations 
would be more difficult to communicate about. In either case, individual 
pairs should still be able to adaptively coordinate on mutually agreeable 
solutions given the flexibility provided by their initial uncertainty. 

3.1. Methods 

3.1.1. Participants 
We recruited 234 participants on Amazon Mechanical Turk and 

paired them up to form 117 dyads. After removing 6 dyads that 
disconnected before completing the task and 4 additional dyads where 
at least one participant failed our attention checks, we were left with 
107 dyads in our sample. Participants were screened for comprehension 
and color vision before being paired with a partner (see Supplemental 
Fig. S6). 

3.1.2. Stimuli 
We constructed 100 four-word contexts from the 200 words we used 

in Experiment 1. We designed these contexts to span a broad range of 
priors based on the population variability we estimated in the prior 

experiment. We iteratively sampled contexts to satisfy to two main 
constraints, both derived from possible pragmatic context effects which 
may mask the effects of priors: (1) we aimed to group words with similar 
variability while (2) minimizing the extent to which different words in 
the same context have overlapping priors. To satisfy these constraints, 
we first ordered words by their estimated response entropy and greedily 
sampled from the list of words to build an initial context. To check the 
extent to which these words had overlapping priors, we computed the 
Jensen-Shannon (JS) divergence between the Experiment 1 response 
distributions for each pair of words in the proposed context. We imposed 
a minimum divergence threshold of 0.3: when the context exceeded this 
threshold for a word, we replaced it with the next in the list until a 
satisfactory set was formed. We repeated this procedure to obtain 50 
contexts where each word appeared in exactly one context and overlap 
within each context was low. To obtain a distinct alternative set of 
contexts, we repeated the same procedure with the additional criterion 
of rejecting pairs of words that had previously appeared together in the 
first set. These 50 contexts were divided into a “high prior variability” 
condition (the top 25) and a “low prior variability” condition (the bot
tom 25). 

3.1.3. Procedure 
Participants were paired into dyads to play an interactive reference 

game using color as the communication medium (Fig. 4). Participants 
were randomly assigned to speaker and listener roles and placed in an 
environment containing a context of 4 concept words and 88 Munsell 
chips, both shared in common ground. At the beginning of each trial, 
one of the 4 words was privately shown to the speaker as the target 
word. The speaker was then instructed to choose a color chip from the 
set of Munsell chips that would best allow the listener to select that 
target from the distractors. After the listener received the speaker’s 
message and clicked on one of the words, both participants received 
feedback: the listener was shown the true target and the speaker was 
shown the listener’s selection. Participants were awarded a performance 
bonus of $0.03 for each correct response. 

3.1.4. Design 
We tested the effect of lexical priors by manipulating the target 

words in a within-dyad design: each dyad was assigned two 4-word 
contexts, one “high prior variability” context and one “low prior 

Fig. 4. Design of Experiment 2. Participants are paired into dyads and assigned to speaker and listener roles. Both participants are shown the full set of Munsell chips and the 
same context of 4 words. The speaker is additionally shown which one of these 4 words is the target word and asked to select a color to send to the listener. The listener then 
guesses the word they believe is the target. Participants independently complete a color association elicitation task before and after the reference game for the test set of eight 
words appearing in the communication game and also a control set of eight additional words. 
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variability” context. The trial sequence was constructed from 6 repeti
tion blocks, allowing us to observe the trajectory of behavior as each 
target is referred to multiple times. The four target words from each 
context were randomly interleaved in each block, for a total of 48 trials 
(six blocks of eight words). Participants switched roles between repeti
tion blocks. Finally, we included two blocks of the prior elicitation task 
used in Experiment 1. At the beginning and end of the reference game, 
we asked participants to provide associations for the 8 test words in the 
contexts they were assigned as well as 8 control words not encountered 
during the reference game task – four with high prior variability and 
with low prior variability. 

3.2. Results 

3.2.1. Shared priors facilitate communicative success 
Our first prediction concerned the effect of priors on communicative 

success, which we operationalized as the probability that the listener 
correctly selects the target (chance is 25%). We hypothesized that par
ticipants would initially struggle more to communicate in the high prior 
variability condition, compared to the low prior variability condition, 
where they could take advantage of stronger expectations and more 
closely overlapping priors. At the same time, we expected participants to 
improve through interaction, as they built common ground across 
repeated appearances of the same targets. To test these hypotheses, we 
constructed a logistic regression to predict correctness at the trial-by- 
trial level, including fixed effects of condition (high prior variability 
context vs. low prior variability context), repetition block number, and 
their interaction, with the maximal random-effect structure that 
converged (random intercepts and both main effects at the dyad-level). 
We found a significant main effect of condition (b = 0.44, z = − 4.8, p <
0.001) with higher accuracy for the low prior variability condition 
throughout the task. We also found a significant improvement in accu
racy across the task in both conditions (b = 0.43, z = 12.0, p < 0.001), 
reflecting ad hoc coordination. Finally, these effects were clarified by a 
significant interaction (b = 0.06, z = − 2.6, p = 0.009), likely reflecting 
ceiling effects for the low-variability conditions. On the first round, 
dyads were at approximately 54% accuracy in the high variability 
condition, compared to 67% accuracy in the low variability condition. 
By the final round, they achieved approximately 78% and 91% 

accuracy, respectively.10 Because each condition contained a wide va
riety of items spanning different priors (reflected in high variances for 
random effect estimates), we also probed these effects using a more fine- 
grained, individualized measure. We computed the ΔE distance between 
the two participants’ pre-test responses for each word in each game, and 
found that quintiles of this continuous measure followed the same trend 
(dashed lines in Fig. 5A). 

3.2.2. Rapid convergence to shared meanings 
To evaluate the extent to which participants flexibly shifted their 

associations for target concepts over the course of interaction, we 
compared pre-test and post-test responses. We operationalized the 
similarity between partners’ associations as the ΔE between their re
sponses at each phase. For example, as a manipulation check, we found 
that participants’ responses were indeed more similar in the pre-test for 
words in the low variability condition than the high variability condi
tion, d = 12.78, t(117.3) = 9.1, p < 0.001), implying that we successfully 
constructed separable context sets from the population variability esti
mates obtained in Experiment 1. Critically, however, we hypothesized 
that participants’ responses in the post-test would become significantly 
closer for the words that were repeated in the reference game, compared 
to a comparable set of control words that only appeared in the pre-test 
and post-test. We tested these predictions in a mixed-effects linear 
regression model including fixed effects of phase (pre-test vs. post-test), 
word set (repeated vs. control), and condition (high vs. low variability) 
as well as all interactions, including random intercepts and slopes for all 
main effects). All variables were effect-coded to facilitate interpretation 
of interactions. Because the three-way interaction in this model is 
complex to reason about, we begin by considering a sub-model restricted 
to the repeated set only. We found a significant main effect of condition, 
b = 0.25, t(110.8) = 10.2, p < 0.001, with responses to low prior vari
ability words being more similar at both phases, as well as a main effect 
of phase b = − 0.38, t(120.0) = 16.49, p < 0.001, with more similar 
responses in the post-test for all words. We also find a significant 
interaction, b = − 0.08, t(355.1) = − 3.87, p = 0.0001, with high prior 
variability words experiencing an even larger shift, likely reflecting a 
floor effect. We evaluate the null hypothesis that this convergence 
simply reflects additional practice with the task using our control words, 
which appeared only in the pre-test and post-test. We found evidence of 

Fig. 5. Results of Experiment 2. (A) Communicative success increases across repeated interaction. Dashed lines represent quintiles of initial similarity between partners’ 
associations in the pre-test (a finer-grained measure than condition). (B) Speakers’ associations begin closer in color space for low prior variability words than for high prior 
variability words, but converge to closer associations in the post-test, relative to a control set that did not appear in the reference game. Error bars are bootstrapped 95% CIs. 

10 A Bayesian logistic regression model with the maximal random-effect 
structure at both the dyad- and item-level yielded similar effects (see Appen
dix Figure S2 for full results) 
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a three-way interaction, where the interaction between phase and con
dition reported above is significantly different from the relationship 
found for control words, where similarity between partners remained 
relatively unchanged between the pre- and post-test (Fig. 5B). 

3.2.3. The dynamics of adaptation 
While we established strong effects of adaptation from the pre-test to 

the post-test, it remains unclear how, exactly, adaptation unfolds 
throughout the communicative interaction. Our final exploratory analysis 
examines how each participant’s choices as speaker change from round to 
round as they observe one another’s behavior. We took advantage of our 
experimental design, which required participants to alternate between the 
speaker and listener roles at the outset of each repetition block. We 
measured two distances at each block i (see Fig. 6): (1) the distance be
tween the chosen color chip chosen by the speaker on that block and their 
own initial choice as measured in the pre-test (which we call “distance from 
own initial”) and (2) the distance between the speaker’s chosen color chip 
and their partner’s initial choice (which we call “distance from other’s 
initial”; note that the partner’s initial choice is unobserved). We tested the 
effects of speaker turn (first vs. second), initial variability condition (high 
vs. low), and block number in mixed-effects regression models predicting 
these distances, including random intercepts at the subject-level and item- 
level as well as random effects for speaker turn at the subject level. 

First, overall, participants tend to shift away from their initial asso
ciations over time, b = 1.2, t(4713) = 5.5, p < 0.001, while also moving 
closer to their partner’s initial associations, b = − 1.1, t(4702) = − 4.7, 
p < 0.001. These shift suggests that partners tend to settle somewhere in 
the middle of their own initial associations and their partner’s initial 
associations. Second, however, we find a significant asymmetry in how 
much each participant adapts. The first participant to take the role of the 
speaker shifts away from their initial association to a lesser extent than 
the second participant that takes the role of the speaker, b = − 4.9, 
t(111.7) = − 6.03, p < 0.001 and also shifts closer to their partner to a 
lesser extent, b = 3.7, t(113.8) = 5.1, p < 0.001. This asymmetry is 
consistent with a “first mover advantage” where the first participant in 
the speaker role only has their own lexical prior to go on, while the 
second participant has additional information from observing those 
initial choices and is able to use that information to anchor their choices 
closer to their partner’s. The asymmetry created by this alternation is 
solidified over the remainder of the game: the second participant actu
ally ends up adopting a convention that is closer to their partner’s initial 
association than to their own. Third, we find that the initial variability 
condition appears to simply shift this overall pattern up or down without 

qualitatively changing the effect. In the low-variability condition, par
ticipants begin closer together but adaptation proceeds similarly, b = −

10.0, t(211.4) = − 10.8, p < 0.001 and b = − 10.3, t(216.9) = − 9.7, 
p < 0.001 for one’s own associations and one’s partner’s associations, 
respectively. 

4. Discussion 

Communication is a continual challenge. Even when we speak the 
same language, our vocabularies are full of words that may mean 
different things to different partners. In this paper, we investigated the 
mental representations of meaning that people use to overcome this 
challenge. Using the domain of color-concept associations, where pop
ulation variability can be carefully measured and manipulated, we first 
established that variability does not take people by surprise: individuals 
represent internal uncertainty about associations rather than point es
timates and these agreement were well-calibrated to the actual 
population-wide statistics. We then used these elicited distributions to 
systematically manipulate the degree of variability in the lexical priors 
of partners in an interactive communication game. Although commu
nication was initially difficult for words with more variable associations, 
participants were able to quickly adapt their expectations based on 
common ground accumulated within the game, leading their priors to 
become more similar over time. Taken together, these findings suggest 
that partners enter communicative settings with well-calibrated but 
flexible priors about the likely difficulty of communication. Our work 
provides new support for recent probabilistic accounts of lexical uncer
tainty in communication and raises a number of new directions. 

First, most prominently, translating our findings from the relatively 
low-dimensional domain of colors back to the much larger lexical priors 
for natural language expressions will require further methodological 
advances. While the gap between these domains may seem to limit 
generalization and any potential differences in signaling medium need 
to be evaluated empirically, we suggest that colors may have more in 
common with words as a signaling medium than is initially apparent 
(Schloss, 2018). Just as the meanings of discrete word “tokens” are 
typically thought to lie in a continuous space (such that we can mean
ingfully talk about the semantic similarity between words or sentences), 
participants were presented with a discrete set of 88 color “tokens” 
whose semantic similarity is also grounded in a continuous underlying 
space (i.e. LAB space). Just as natural-language speakers cannot directly 
convey meanings from the continuous semantic space and must pass 
through the bottleneck of discrete tokens, our participants could not 

Fig. 6. Dynamics of adaption in Experi
ment 2. Dotted lines represent distance from 
one’s own initial choice while solid lines 
represent the distance from one’s partner’s 
initial choice choice. The red and blue lines 
track each participant’s identity as they 
alternate roles. Both participants tend to shift 
away from their initial associations over time 
(dotted lines rise) while also moving closer to 
their partner’s initial associations (solid lines 
fall). However, there is significant asymmetry 
in the directionality of adaptation: the first 
participant to take the role of the speaker 
shifts from their initial association to a lesser 
extent than the second participant that takes 
the role of the speaker. Horizontal black lines 
are provided for easier comparison to pre-test 
distances; error bars represent bootstrapped 
95% CIs. (For interpretation of the refer
ences to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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directly access the continuous color space; they had to pass through the 
bottleneck of discrete chips. Perhaps the most significant difference 
between domains is not discreteness but that the underlying similarity of 
the chips is exposed visually, whereas the semantic similarity of word 
tokens is typically not exposed visually (e.g. words that are nearby in 
meaning often appear very different when written out orthographi
cally). Especially because we organized the discrete set of color tokens 
according to their visual similarity in the task interface, we may have set 
up an easier pathway for speakers to compare similar signals. But we 
expect that this difference would primarily affect search and retrieval 
from the space of discrete tokens rather than the representation of un
certainty about a given token’s meaning or the choice to use that token. 

Second, our evidence for lexical uncertainty raises deeper mechanistic 
questions about how, exactly, variability is encoded and learned by in
dividuals. There are a number of different computational models for 
probabilistic meanings that have arisen in natural language processing 
(NLP), including Gaussian embeddings and Gaussian mixtures (Athiwar
atkun, Wilson, & Anandkumar, 2018; Bražinskas, Havrylov, & Titov, 2018; 
Vilnis & McCallum, 2015) as well as a number of different proposals for 
how these distributions may be learned over time depending on an in
dividual’s own idiosyncratic experiences (Johns & Jamieson, 2018; Johns, 
Jones, & Mewhort, 2019; Kleinschmidt, 2019; Kraljic, Samuel, & Brennan, 
2008). A related direction is to better characterize the mechanistic pro
cesses allowing participants to align their associations to communicate 
better (as we found in Experiment 2), and whether updates to an in
dividual’s associations are long-lasting or transient. One lower-level 
explanation for alignment is that participants are simply priming one 
another and making certain associations more salient or accessible (Pick
ering & Garrod, 2006). A higher-level explanation, not mutually exclusive 
with priming, is that speakers update their beliefs to form partner-specific 
common ground (Hawkins et al., 2022). This hierarchical account predicts 
that the extent to which local adaptation will persist in longer-term updates 
depends on sustained use of that association over time, across different 
partners. For example, as a slang term is more consistently and widely used 
throughout a language community, it may eventually supplant whatever 
initial associations individuals had with that word and persist as a longer- 
term update. However, such persistence would likely require more than a 
single interaction. 

A third direction for future work is to examine how sources of vari
ability in color associations arise in the first place. While we confirmed a 
coarse relationship between the abstractness of a concept and the vari
ability of its associations, it remains unclear how this relationship arises. 
On one hand, some portion of this relationship may be driven by sensory 
aspects of word representations. We are all exposed to roughly the same 
visual imagery statistics for concrete concepts such as “tree,” suggesting 
strong associations with greens and browns. Meanwhile, abstract con
cepts such as “justice” lack concrete referents and associations may be 
driven by more idiosyncratic semantic properties that vary depending 
on each individuals’ own history with the concept. These terms may be 
more susceptible to cultural variation across different languages and 
latent social groups (Tham et al., 2020), which would be interesting to 
measure in broader cross-cultural samples. 

It is worth noting several potential limitations of our data. For one, 
there are intrinsic challenges associated with accurately sampling re
sponses from color space. While we evenly sampled color chips from the 
Munsell color chart (Landa & Fairchild, 2005; Munsell, 1905), following 
standard practice for color elicitation (Berlin & Kay, 1969; Brown & 
Lenneberg, 1954; Gibson et al., 2017; Sturges & Whitfield, 1995), there 
are known distortions created by this set of chips (Zaslavsky, Kemp, 
Regier, & Tishby, 2018). Most noticeably, discrepancies in the relative 
number of green-blue and red-pink chips compared to yellow-ish chips 
may have biased responses towards better-represented hues. We ex
pected this distortion to have the biggest effect on entropy-based mea
sures of variability, which is more sensitive to the support of the 
response distribution then our ΔE measure. Second, our online data 
collection setup prevented us from ensuring perfectly consistent color 

calibration across participants’ screens, raising concerns that variability 
in associations is simply due to presentation noise. While we did our best 
to minimize such sources of variability and bias, our primary compari
sons were importantly relative comparisons between different words 
(e.g. between words with more or less variability). Because the display 
of colors on a given participant’s screen was likely to be fixed across the 
experiment, any noise or bias arising from the color display should 
contribute equally across all words and conditions. Third, it is possible 
that our use of within-participant designs, both when eliciting multiple 
responses across blocks in Experiment 1 and when interleaving high and 
low variability contexts in Experiment 2, may have resulted in spillover 
or “self-priming” effects that reduce our estimates of internal variability. 
Generally, these possible effects would work against our hypotheses: in 
Experiment 1, self-priming would have favored the point estimate hy
pothesis rather than the internal uncertainty hypothesis, and in Exper
iment 2, it would have reduced our estimate of differences across 
conditions. More broadly, it will be important to reproduce our findings 
using longer delays between blocks. 

More broadly, color associations are of substantial interest for 
communication in their own right. The very properties that we high
lighted in Experiment 1 may be responsible for the prevalence and 
usefulness of color in communicating about abstractions, relative to 
more concrete modalities (Gass, 1975; Johansson, Anikin, & Aseyev, 
2020; Schloss, Witzel, & Lai, 2020; Winter, 2019). When a speaker says 
“love is blue” they draw attention to different semantic dimensions than 
“love is bright red,” which may be difficult to reach with other meta
phorical expressions. Thus, characterizing uncertainty in communica
tion with color associations is not only useful for practical visual 
communication like the choice of color in data visualization (Lin, For
tuna, Kulkarni, Stone, & Heer, 2013; Schloss, Leggon, & Lessard, 2021; 
Setlur & Stone, 2015), or for design elements like signage (Mahnke, 
1996; Schloss, Lessard, Walmsley, & Foley, 2018), but is core to a more 
general theory of multi-modal communication. The meanings of colors 
may have much in common with the meanings of words we use in 
everyday conversations. Rather than rigid dictionaries, well-calibrated 
probability distributions allow us to better anticipate mis
understandings and coordinate with one another to achieve mutual 
understanding. 
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Appendix A. What is a lexical prior? 

While the present work focuses on basic qualitative properties of lexical priors, and a formal model is not strictly necessary to interpret our findings, 
an overview of previous formal definitions nonetheless helps make this construct more precise (see Bergen et al., 2016; Hawkins et al., 2022, for a 
more extensive treatment). We begin by defining a lexicon L , which specifies a specific set of form-meaning mappings, assign semantic meanings to all 
utterances in a language. 

Definition 1. A lexicon L : (u,m) → {0,1} is a function assigning a Boolean truth value11 to every pair of utterances u ∈ U and meanings m ∈ M . 

Traditionally, all speakers of a language are assumed to learn a single fixed lexicon specifying the meaning of every utterance in the language. 

Example 1. Consider a simple referential language game where there are 2 possible utterances u ∈ {u1,u2} and 2 possible meanings m ∈ {m1,m2}. 
Then a single lexicon L can be represented as a binary ∣U ∣ × ∣M ∣ matrix with 2 rows and 2 columns, where each entry represents whether utterance u 
has meaning m or not, and L (u,w) simply looks up the specified entry: 

L =

(
1 0
1 1

)

Now, it is straightforward to define a lexical prior as a probability distribution over such matrices, representing an agent’s uncertainty over exactly 
which lexicon is being used by their partner. 

Definition 2. A lexical prior is a probability distribution over the support of possible lexicons, denoted by P(L ). 

Note that the lexical prior P(L is distinct from P(u) or P(m), which simply represent the background probability of a given utterance or meaning 
independently popping up in the environment. 

Example 2. Let L ij be the matrix entry representing whether utterance ui has meaning mj. Then 

P
(

L ij
)
∼ Bernoulli(5)

defines a maximally uninformative prior where every utterance is equally likely a priori to have every meaning. 

Example 3. If we additionally assume that lexicons satisfy the constraint that entries sum to one for each column of the matrix (a weak form of 
mutual exclusivity, where every meaning is assumed to have exactly utterance that expresses it), then the lexical prior may be specified even more 
compactly in conditional form as 

P
(

L ij
)
= P

(
ui|mj

)
∼ Categorical

(
θj
)
,

where every meaning mj is associated with a vector θj giving a distribution over utterances. We are now prepared to consider how these theoretical 
constructs correspond our setting of color-concept signaling games, where the meanings m are a discrete set of concept words (e.g. lemon, randomness) 
and the utterances u are a discrete set of 88 color chips. We could in principle try to elicit the full latent object L by showing participants every color- 
concept pair (u,m) and collecting a slider response or 2AFC judgement about whether that participant (or that participant’s partner) would endorse 
that specific mapping. This kind of elicitation procedure might be the most direct instantiation of the formal definition but is expensive to collect (e.g. 
requiring 50 × 88 = 4400 judgements from a single participant to cover just a quarter of the concepts we use). Instead, we elicit the prior by taking 
samples from the conditional distribution P(u|m), which also happens to be a well-vetted method for eliciting color associations. In other words, we 
query a column of the lexicon (i.e. conditioning on a given concept) and ask participants to draw a sample from the induced distribution over color 
chips. For this reason, it is convenient to define the lexical prior for a given concept m as the elicited distribution over colors given m, although it is a 
slight abuse of the term. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cognition.2022.105152. 
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